Text topic modeling via representation learning non-negative matrix factorization with semantic similarity

Author:

Xu Yang1,Zhang Yueyi1,Hu Jing1

Affiliation:

1. China Jiliang University

Abstract

Abstract

Topic models are instrumental in text mining, revealing discriminative and coherent latent topics. Fewer words in short texts lead to insufficient contextual information and produce a highly sparse document-word matrix. So traditional topic models struggle to effectively cluster short texts. Models incorporating global word co-occurrence introduce too much information when processing long texts, resulting in a decrease in convergence speed and poorer clustering accuracy. To overcome sparsity in short texts and the impact of word co-occurrence on long texts, we propose a representation learning non-negative matrix factorization with semantic similarity topic model for texts of varying lengths, named RL-NMF-SS. The proposed method incorporates word co-occurrence and text similarity as regularization constraints and adjusts the regularization parameters to improve the adaptability to different corpora. Meanwhile, factor matrices are initialized via representation learning (RL) to bolster clustering robustness and model convergence. Extensive experiments on real-world corpora of varying text lengths, experimental results demonstrate RL-NMF-SS's superior performance in topic coherence and clustering accuracy, and RL-based initialization strategies exhibit excellent convergence.

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Yang, K., Zhang, H., Chu, Z., Sun, L.: A Text Topic Mining Algorithm Based on Spatial Propagation Similarity Metric. In: 2019 Chinese Control And Decision Conference (CCDC). (2019)

2. A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts;Egger R;Front. Sociol.,2022

3. Zhao, H., Du, L., Buntine, W., Zhou, M.: Dirichlet belief networks for topic structure learning. (2018)

4. Xu, W., Liu, X., Gong, Y.: Document Clustering Based On Non-negative Matrix Factorization, pp. 267–273. ACM SIGIR FORUM (2003)

5. Finding the Number of Latent Topics With Semantic Non-Negative Matrix Factorization;Vangara R;Ieee Access.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3