A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts

Author:

Egger Roman,Yu Joanne

Abstract

The richness of social media data has opened a new avenue for social science research to gain insights into human behaviors and experiences. In particular, emerging data-driven approaches relying on topic models provide entirely new perspectives on interpreting social phenomena. However, the short, text-heavy, and unstructured nature of social media content often leads to methodological challenges in both data collection and analysis. In order to bridge the developing field of computational science and empirical social research, this study aims to evaluate the performance of four topic modeling techniques; namely latent Dirichlet allocation (LDA), non-negative matrix factorization (NMF), Top2Vec, and BERTopic. In view of the interplay between human relations and digital media, this research takes Twitter posts as the reference point and assesses the performance of different algorithms concerning their strengths and weaknesses in a social science context. Based on certain details during the analytical procedures and on quality issues, this research sheds light on the efficacy of using BERTopic and NMF to analyze Twitter data.

Publisher

Frontiers Media SA

Subject

General Social Sciences

Reference74 articles.

1. BERT for Arabic topic modeling: an experimental study on BERTopic technique;Abuzayed;Proc. Comput. Sci,2021

2. Using topic modeling methods for short-text data: a comparative analysis;Albalawi;Front. Artif. Intellig,2020

3. ZeroBERTo - leveraging zero-shot text classification by topic modeling AlcoforadoA. FerrazT. P. GerberR. BustosE. OliveiraA. S. VelosoB. M. ChamFortaleza, Portugal and SpringerarXiv [Preprint]. arXiv: 2201.013372022

4. “A semi-supervised approach for user reviews topic modeling and classification,”;Alnusyan,2020

5. AndersonC The End of Theory: The Data Deluge Makes the Scientific Method Obsolete2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3