Untangling heat transport dynamics using luminescence nanothermometry

Author:

Brites Carlos1ORCID,Skripka Artiom2,Benayas Antonio3ORCID,Debasu Mengistie4ORCID,Vetrone Fiorenzo5,Carlos Luís6ORCID

Affiliation:

1. Universidade de Aveiro

2. Lawrence Berkeley National Laboratory

3. Universidad Autónoma de Madrid (UAM) & IRYCIS

4. University of New Mexico

5. Institut National de la Recherche Scientifique

6. University of Aveiro

Abstract

Abstract Temperature touches all aspects of our daily life, including climate, production plants, food storage, transportation, metrology, microelectronics, and medicine, and is a major factor dictating performance of nanotechnologies.1-4 However, while the heat transfer is well understood in bulk, neither experimental nor theoretical models provide a complete picture of the thermal dynamics at the nanoscale.5-7 Here, in situ luminescence thermometry is used to probe the heat propagation taking place within lanthanide (Ln3+)-doped upconverting nanoparticles (UCNPs). We have designed UCNPs with Er3+ and Tm3+ thermometric layers positioned at different locations relative to their surface, varying the distance a heat wave travels before encountering the layers. Despite being separated only by a few tens of nanometers, the thermometric layer closer to the surface of UCNPs detects temperature increase much earlier than the one located at the center – yielding the heat propagation speed in UCNPs ~1.3 nm/s. The UCNPs featuring the two thermometric layers in a single nanostructure confirmed the above result and allowed us to uncover diffusive and non-diffusive (ballistic) heat transport regimes, as well as their interplay and complex heat exchange dynamics taking place in colloidal nanoparticles (nanofluids) at a room temperature.

Publisher

Research Square Platform LLC

Reference37 articles.

1. Nanoscale temperature mapping in operating microelectronic devices;Mecklenburg M;Science,2015

2. Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices;Ziabari A;Nat. Commun.,2018

3. Advances and challenges for fluorescence nanothermometry;Zhou JJ;Nat. Methods,2020

4. Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry;Waissman J;Nat. Nanotechnol.,2022

5. Hoogeboom-Pot, K. M. et al. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. Proc. Natl. Acad. Sci. USA 112, 4846–4851 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3