Deoxynivalenol and T-2 toxins cause liver damage and egg quality degradation through endoplasmic reticulum stress in summer laying hens

Author:

Guo Haoneng1ORCID,Wan HongYan,Lou Wenfang,Khan Rifat Ullah,You Jinming,Huang Bo,Hao Shu,Li Guanhong,Dai Sifa

Affiliation:

1. Jiangxi Agricultural University College of Animal Science and Technology

Abstract

Abstract The present study aimed to find whether low doses of mixed mycotoxins would affect egg quality in laying hens, and to explore the oxidative stress induced liver damage through endoplasmic reticulum during summer stress. A total of 96 Jinghong laying hens, 36 wks of age, were divided into four treatments, with eight repetitions per treatment and three hens per repetition. All the hens were raised in summer (average temperature: 31.3 ± 0.5℃; average humidity: 85.5 ± 0.2%) for 28d. One treatment was fed a basal diet as control (CON), and the other three treatments were fed the same diets containing 3.0 mg/kg deoxynivalenol (DON), 0.5 mg/kg T-2 toxin (T-2), and 1.5 mg/kg DON + 0.25 mg/kg T-2 toxin (Mix). Albumen height and Haugh unit were decreased (P < 0.05) in the Mix group on day 14 and 28. The activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase were decreased (P < 0.05) in the DON, T-2, and Mix groups. The alkaline phosphatase level in DON, T-2, and Mix groups was significantly increased (P < 0.05). The level of interleukin-1β, interferon-γ, and tumor necrosis factor-α in the Mix group were higher (P < 0.05) than CON, DON, and T-2 groups. Mix group upregulated the mRNA expressions of protein kinase RNA-like ER kinase, activating transcription factor4, IL-1β, nuclear factor-κ-gene binding, and nuclear respiratory factor 2 in the liver (P < 0.05). The results showed that low doses of DON and T-2 toxin could cause oxidative stress in the liver, but DON and T-2 toxin have a cumulative effect on virulence, which can reduce egg quality and cause endoplasmic reticulum stress in the liver.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3