Visualising nanoscale bias-induced degradation in halide perovskite solar absorbers

Author:

Ducati Caterina1ORCID,Orri Jordi Ferrer1ORCID,Iqbal Affan1ORCID,Yang Terry1,Doherty Tiarnan1ORCID,Selby Thomas1ORCID,Chiang Yu-Hsien1,Anaya Miguel1ORCID,Allen Christopher2,Stranks Samuel1ORCID

Affiliation:

1. University of Cambridge

2. Electron Physical Sciences Imaging Centre, Diamond Light Source Ltd

Abstract

Abstract Halide perovskite absorbers show enormous potential for next-generation photovoltaic technologies, yet fundamental material degradation mechanisms under operation remain poorly understood. Here, the operational degradation mechanisms in formamidinium-rich (FA-rich) perovskite solar absorbers are studied at the nanoscale through correlative and in-situ electron microscopy techniques, unveiling a rich interplay between charge-carrier-mediated redox reactions and ion segregation under electrical bias. We observe the formation of a degradation front near the positive contact that we ascribe to iodide oxidation and migration. At the opposite contact we see the effects of lead reduction. Alloyed perovskite compositions exhibit more widespread degradation correlated to the presence of nanoscale defective phases and halide heterogeneity, with the microstructure orientation playing a role in the nucleation of phase impurities, carrier transport and transformation under bias. The multi-electrode design biasing platform employed here uniquely enables the selective decoupling of hole- and electron-mediated degradation processes, allowing direct insights into the response of halide perovskite thin films to electrical bias, and the resulting degradation pathways. This fundamental understanding of the electrochemical behaviour of hybrid absorbers will inform strategies for enhanced stability in perovskite optoelectronic devices.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3