An Enhanced Feature Matching Method for Multi-modal Remote Sensing Image Registration based on Multi-dimension Constraint

Author:

Yang Hong1,Jin Lu1,Li Ji1,Zhang Qichun2,He Xiaohai1,Wang Pingyu1,Peng Yonghong3

Affiliation:

1. Sichuan University

2. University of Bradford

3. Manchester Metropolitan University

Abstract

Abstract

Multi-modal remote sensing image registration is the key foundation of remote sensing image processing, which is also a significant research topic in the fields of environmental modeling and Earth detection. The characteristics of multi-modal images, such as variations in radiation, geometry, scale, viewpoint, and dimensionality present significant challenges for achieving high-precision matching. Aiming at increasing the registration points when the error is similar, this paper proposes an enhanced feature matching (EFM) method for multi-modal remote sensing images, which includes: 1) An low-complexity moment (LCM) calculation for a modified feature point extraction method; 2) Multi-dimensional space constraints (MSC) joint of phase, position and direction. The experimental results show that the EFM method has achieved significant improvement in feature point extraction and matching of multi-modal remote sensing images, with a three fold increase in registration points compared to conventional registration schemes, making it suitable for remote sensing image registration.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3