Affiliation:
1. The Ohio State University College of Veterinary Medicine
2. North Carolina State University College of Veterinary Medicine
3. Texas A&M University College of Veterinary Medicine
4. University of Florida College of Veterinary Medicine
Abstract
AbstractRodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fedad libitumfor seven days, then calories were restricted to achieve 1–2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during diet-induced weight loss (adjusted p < 0.05). Spearman correlation revealed the relative abundances ofPrevotella 9 copri(ρ = 0.6385, p = 0.0006) andBlautia caecimuris(ρ = 0.5269, p = 0.0068) were significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during diet-induced weight loss.
Publisher
Research Square Platform LLC