Polarised human alveolar epithelia enable identification of dichloroacetate as an effective drug against respiratory viruses

Author:

de Iturrate Paula Martínez1ORCID,Hernáez Bruno2ORCID,Santos Patricia de los3ORCID,García-Gómez Alba3ORCID,Sánchez-Cruz Alonso3ORCID,Hernández-Sánchez Catalina3ORCID,Rivas Luis3ORCID,Val Margarita del2ORCID,Rial Eduardo1ORCID

Affiliation:

1. Centro Investigaciones Biológicas Margarita Salas - CSIC

2. Centro de Biologia Molecular Severo Ochoa - CSIC/UAM

3. Centro de Investigaciones Biológicas Margarita Salas, CSIC

Abstract

Abstract

Respiratory viral infections are a significant cause of morbidity and mortality worldwide. The COVID-19 pandemic has highlighted the lack of chemotherapeutic tools available for fighting emerging viruses and the need to focus on preclinical models that better recapitulate human disease. We performed a comparative analysis of inhibitors of the PI3K/AKT/mTOR pathway, which is involved in virus-induced metabolic reprogramming, since strategies aimed at identifying cellular targets could serve to combat diverse viruses and hamper the development of resistance. Tests were performed in two human cell lines, MRC5 lung fibroblasts and Huh7 hepatoma cells, and the results showed that the inhibitors had markedly different effects on energy metabolism and antiviral activity. Thus, dichloroacetate (DCA) has potent antiviral activity against HCoV-229E in MRC5 cells but not in Huh7 cells, suggesting that the screening model is more critical than previously assumed. DCA was then tested in polarized human alveolar epithelia in air-liquid interface, a 3D model used to study respiratory infections. DCA reduced the viral progeny of HCoV-229E, SARS-CoV-2 and respiratory syncytial virus by 2-3 orders of magnitude, and it was effective even when applied once infection had been established. Although DCA has previously been shown to be effective against other viruses, suggesting that it could be a broad-spectrum antiviral, our experiments reinforce the need to use physiologically appropriate disease models to screen antiviral compound.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3