Optimization of composting methods for efficient use of cassava waste, using microbial degradation

Author:

He Xiangning1,Cong Riyao1,Gao Wei1ORCID,Duan Xueying1,Gao Yi1,Li Hong1,Li Zepu2,Diao Hailin3,Luo Jianju1

Affiliation:

1. Guangxi University School of Resources Environment and Materials

2. Northwest A&F University: Northwest Agriculture and Forestry University

3. Guangxi University Forestry College

Abstract

Abstract With the recent revolution in the green economy, agricultural solid waste resource utilization has become an important project. A small-scale laboratory orthogonal experiment was set up to investigate the effects of C/N ratio, initial moisture content and fill ratio (v cassava residue: v gravel) on the maturity of cassava residue compost by adding Bacillus subtilis and Azotobacter chroococcum. The highest temperature in the thermophilic phase of the low C/N ratio treatment is significantly lower than the medium and high C/N ratios. The C/N ratio and moisture content have a significant impact on the results of cassava residue composting, while the filling ratio only has a significant impact on the pH value and phosphorus content. Based on comprehensive analysis, the recommended process parameters for pure cassava residue composting are a C/N ratio of 25, an initial moisture content of 60%, and a filling ratio of 5. Under these conditions, the high-temperature conditions can be reached and maintained quickly, the organic matter has been degraded by 36.1%, the pH value has dropped to 7.36, the E4/E6 ratio is 1.61, the conductivity value has dropped to 2.52 mS/cm, and the final germination index increased to 88%. The thermogravimetry, scanning electron microscope, and energy spectrum analysis also showed that the cassava residue was effectively biodegraded. Cassava residue composting with this process parameter has great reference significance for the actual production and application of agriculture.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3