Optimizing Fault Tolerance of RAM cell through MUX based Modeling and Design using symmetries of QCA Cells

Author:

Naz Syed Farah1,Ahmed Suhaib2,Mughal Shafqat Nabi3,Asger Mohammed3,Das Jadav Chandra4,Mallik Saurav5,Shah Mohd Asif6

Affiliation:

1. IIT Jammu

2. Model Institute of Engineering and Technology

3. BGSB University

4. Maulana Abul Kalam Azad University of Technology

5. Harvard T H Chan School of Public Health

6. Kebri Dehar University

Abstract

Abstract Extensive research is now being conducted on the design and construction of logic circuits utilizing quantum-dot cellular automata (QCA) technology. This area of study is of great interest due to the inherent advantages it offers, such as its compact size, high speed, low power dissipation, and enhanced switching frequency in the nanoscale domain. This work presents a design of a highly efficient RAM cell in QCA, utilizing a combination of a 3-input and 5-input Majority Voter (MV) gate, together with a 2×1 Multiplexer (MUX). The proposed design is also investigated for various faults such as single cell deletion, single cell addition and single cell displacement or misalignment defects. The circuit under consideration has a high degree of fault tolerance. The functionality of the suggested design is showcased and verified through the utilization of the QCADesigner tool. Based on the observed performance correlation, it is evident that the proposed design demonstrates effectiveness in terms of cell count, area, and latency. Furthermore, it achieves a notable improvement of up to 76.72% compared to the present configuration in terms of quantum cost. The analysis of energy dissipation, conducted using the QCAPro tool, is also shown for various scenarios. It is seen that this design exhibits the lowest energy dispersion, hence enabling the development of ultra-low power designs for diverse microprocessors and microcontrollers.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3