Multi-Step-Ahead Rainfall-Runoff Modeling: Decision Tree-Based Clustering for Hybrid Wavelet Neural- Networks Modeling

Author:

Molajou Amir1,Nourani Vahid2,Tajbakhsh Ali Davanlou3,Variani Hossein Akbari1,Khosravi Mina1

Affiliation:

1. Iran University of Science and Technology

2. Tabriz University: University of Tabriz

3. KN Toosi: KN Toosi University of Technology

Abstract

Abstract

This paper introduces a novel hybrid approach for predicting the rainfall-runoff (r-r) phenomenon across different data division scenarios (50%-50%, 60%-40%, and 75%-25%) within two distinct watersheds, encompassing both monthly and daily scales. Additionally, the effectiveness of this newly proposed hybrid method is evaluated in multi-step ahead prediction (MSAP) scenarios. The proposed method comprises three primary steps. Initially, to address the non-stationarity of the runoff and rainfall time series, these series are decomposed into multiple sub-time series using the wavelet (WT) decomposition method. Subsequently, in the second step, the decomposed sub-series are utilized as input data for the M5 model tree, a decision tree-based model. The M5 model tree classifies the samples of decomposed runoff and rainfall time series into distinct classes. Finally, each class is modeled using an artificial neural network (ANN). The results demonstrate the superior efficiency of the proposed WT-M5-ANN method compared to other available hybrid methods. Specifically, the calculated R2 was 0.93 for the proposed WT-M5-ANN method, whereas it was 0.89 and 0.81 for the WT-ANN and WT-M5 methods, respectively, for the Lobbs Hole Creek watershed at the daily scale.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3