Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins
Author:
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science
Link
https://link.springer.com/content/pdf/10.1007/s00704-021-03681-2.pdf
Reference67 articles.
1. Adnan RM, Liang Z, Kuriqi A, Kisi O, Malik A, Li B (2020) Streamflow forecasting using heuristic machine learning methods. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS), pp 1–6
2. Adnan RM, Petroselli A, Heddam S et al (2021) Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stoch Environ Res Risk Assess 35:597–616. https://doi.org/10.1007/s00477-020-01910-0
3. Agarwal A et al (2006) Simulation of runoff and sediment yield using artificial neural networks. Biosys Eng 94(4):597–613
4. Alizadeh MJ et al (2017) A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J Hydrol 548:588–597
5. Anomaa Senaviratne GMMM et al (2014) Use of fuzzy rainfall–runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri. J Hydrol 517:1008–1018
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Brahmaputra River (Pandu Station) Flow Prediction Using MLR, ANN, and RF Models Combined with Wavelet Transform;KSCE Journal of Civil Engineering;2024-08-06
2. Fine-tuning inflow prediction models: integrating optimization algorithms and TRMM data for enhanced accuracy;Water Science & Technology;2024-07-03
3. Internal structure modification of a simple monthly water balance model via incorporation of a machine learning-based nonlinear routing;Journal of Hydroinformatics;2024-07-01
4. Unleashing the power of AI: revolutionizing runoff prediction beyond NRCS-CN method;Arabian Journal of Geosciences;2024-06-26
5. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India;Environmental Research;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3