Pasting and Texture Properties of Commercial Plant Proteins and Its Mixtures

Author:

Kaspchak Elaine1,Muntilha Anna Paula1,Nabeshima Elizabeth Harumi1,Sadahira Mitie Sônia1

Affiliation:

1. Instituto de Tecnologia de Alimentos (ITAL)

Abstract

Abstract

Protein mixtures are usually applied in plant based products development in order to achieve amino acids balance and properly technological performance. Therefore, the aim of this work was to study the pasting and texture properties of commercial proteins commonly used in food products (pea, lentil, fava bean, rice and soybean) and its binary and ternary mixtures. The pasting properties were studied by Rapid Visco Analyser (RVA) and the texture by Texture Profile Analysis (TPA) method using a texturometer. Results showed that protein mixtures exhibit distinct behaviors when compared to single proteins. Single lentil and soy protein presented the highest final viscosity (847 and 806 cP, respectively) whilst the rice the lowest final viscosity (10 cP). Related to texture, faba bean and soy exhibited the highest gel hardness (1.52 and 1.50 N, respectively). For binary and ternary mixtures, in general, the viscosity and texture profiles parameters decreased. Rice-containing mixtures showed the lowest final viscosity (30.5–62.0 cP), while lentil and faba bean mixtures had the highest final viscosities and gel strengths (579 cP and 1.77 N, respectively). From the ternary mixtures, samples containing lentil, fava bean, and rice displayed superior gel strength (0.9 N) due to a synergistic interaction. This work provides information about vegetable proteins and its mixtures that can be used for a better design of plant based food products.

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. K.K. Ma, M. Greis, J. Lu, A.A. Nolden, D.J. McClements, A.J. Kinchla, Foods. 11, 1 (2022)

2. D. Webb, Y. Li, S. Alavi, Trends Food Sci. Technol. 131, 129 (2022)

3. L. de Paiva, R. Gouvêa, T. Caldeira, de M.C. Lima Azevedo, I. Galdeano, J.R. Felberg, Lima, and C. Grassi Mellinger, Food Hydrocoll. 137, 108351 (2023)

4. M. Lonnie, E. Hooker, J.M. Brunstrom, B.M. Corfe, M.A. Green, A.W. Watson, E.A. Williams, E.J. Stevenson, S. Penson, A.M. Johnstone, Nutrients. 10, 1 (2018)

5. V. Melina, W. Craig, S. Levin, J. Acad. Nutr. Diet. 116, 1970 (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3