Thermal diffusivity microscope – zooming-in on anisotropic heat transport

Author:

Pryds Nini1ORCID,Lamba Neetu1,Beltrán-Pitarch Braulio1ORCID,Yu Tianbo1,Dawod Muhamed2,Berner Alexander,Guralnik Benny3ORCID,Orekhov Andrey4ORCID,Gauquelin Nicolas5ORCID,Amouyal Yaron6,Verbeeck Johan7,Hansen Ole1ORCID,Petersen Dirch1

Affiliation:

1. Technical University of Denmark

2. Department of Materials Science and Engineering; Technion – Israel Institute of Technology

3. KLA

4. University of Antwerp

5. Electron Microscopy for Materials Science (EMAT), University of Antwerp

6. Technion – Israel Institute of Technology

7. Electron Microscopy for Materials Research (EMAT), University of Antwerp

Abstract

Abstract

Anisotropic heat conducting materials, where heat flows faster in one direction than another, play crucial roles in designing electronic, optoelectronic, and thermoelectric devices, where temperature and thermal stress are important. Despite significant research efforts, a major obstacle to determining the anisotropic thermal diffusivity tensor in polycrystalline systems is the need for a robust, direct, and non-destructive technique to distinguish between distinct thermal diffusivities. Here, we demonstrate a conceptually new thermal diffusivity microscope capable of performing high-resolution local measurements of anisotropic thermal diffusivity. The microscope is based on a unique micro four-point probe, providing fast, nondestructive scanning and calibration-free measurements. Through a series of experiments, we demonstrate that the anisotropy of the thermal diffusivity correlates excellently with the crystallographic direction of prototypical Bi2Te3. Our results provide insights into the complex anisotropic heat transport and show that the lattice contribution dominates the heat transport for both in- and out-of-plane directions.

Publisher

Springer Science and Business Media LLC

Reference53 articles.

1. High-performance bulk thermoelectrics with all-scale hierarchical architectures;Biswas K;Nature,2012

2. A review of strategies for developing promising thermoelectric materials by controlling thermal conduction;Yin Y;Phys status solidi (a),2019

3. Zhao L-D et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. nature 508, 373–377

4. Advances in thermoelectric materials research: Looking back and moving forward;He J;Science,2017

5. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys;Poudel B;Science,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3