Preparation of low internal resistance electrode material with multistage interconnected pores from coffee grounds

Author:

Li Bin1,Li Jian1,Guo Minghui1

Affiliation:

1. Northeast Forestry University

Abstract

Abstract Using biomass waste materials to prepare electrode materials with excellent properties is an effective strategy for solving current energy and environmental problems. In this work, coffee grounds were pretreated with Co(NO3)2 and Ni(NO3)2, then KOH was used to activate the pretreated coffee grounds at a high temperature to obtain a foam-like electrode material with interconnected microporous-mesoporous-macroporous hierarchical channels. This preparation method is simple and has low energy consumption, and the resulting material has an ultra-low internal resistance of 0.31 Ω. The specific capacitance of CGC-2 is 302.65 F g− 1 at a current density of 1 A g− 1. The low internal resistance and high electrical conductivity of this activated material are attributed to the presence of Co2+ and Ni2+ during carbonization, whose catalytic effect leads to a relatively ordered lattice structure. The interconnected structure of the final product is mainly caused by the strong activation function of KOH generating many pores. The prepared material exhibits good rate performance and cycling stability, and it has a Coulombic efficiency of nearly 100%. This work provides a novel idea for using biomass materials to fabricate high-performance electrode materials for supercapacitors.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3