Carbon-based supercapacitors for efficient energy storage

Author:

Chen Xuli1,Paul Rajib1,Dai Liming1

Affiliation:

1. Center of Advanced Science and Engineering for Carbon (Case 4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA

Abstract

AbstractThe advancement of modern electronic devices depends strongly on the highly efficient energy sources possessing high energy density and power density. In this regard, supercapacitors show great promise. Due to the unique hierarchical structure, excellent electrical and mechanical properties, and high specific surface area, carbon nanomaterials (particularly, carbon nanotubes, graphene, mesoporous carbon and their hybrids) have been widely investigated as efficient electrode materials in supercapacitors. This review article summarizes progress in high-performance supercapacitors based on carbon nanomaterials with an emphasis on the design and fabrication of electrode structures and elucidation of charge-storage mechanisms. Recent developments on carbon-based flexible and stretchable supercapacitors for various potential applications, including integrated energy sources, self-powered sensors and wearable electronics, are also discussed.

Funder

National Science Foundation

Air Force Office of Scientific Research

Department of Defense—Multidisciplinary University Research Initiative

Dayton Area Graduate Studies Institute

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 637 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3