Machine Learning Analysis of Biomarkers and Infectious Sites in Elderly Sepsis: Distinguishing Escherichia coli from Non-Escherichia coli Infections with a Random Forest Model

Author:

Li Bu-Ren1,Zhuo Ying1,Zhang Shi-Yan1,Jiang Ying-Ying1

Affiliation:

1. Fujian University of Traditional Chinese Medicine

Abstract

Abstract This study examines the challenge of accurately diagnosing sepsis subtypes in elderly patients, focusing on distinguishing between Escherichia coli and non-E. coli infections. Utilizing machine learning, we conducted a retrospective analysis of 119 elderly sepsis patients, employing a Random Forest model to evaluate clinical biomarkers and infection sites. The model demonstrated high diagnostic accuracy, with an overall accuracy of 87.5%, and impressive precision and recall rates of 93.3% and 87.5%, respectively. It identified infection site, Platelet Distribution Width (PDW), platelet count, and Procalcitonin (PCT) levels as key predictors, while logistic regression underscored the significance of smoking. Achieving an F1 Score of 90.3% and an ROC AUC of 88.0%, our model effectively differentiates between sepsis subtypes. This methodology offers potential for enhancing elderly sepsis diagnosis, improving patient outcomes, and contributing to the advancement of precision medicine in the field of infectious diseases.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3