Induction of the CtsR regulon improves Xylanase production in Bacillus subtilis

Author:

Wang Biwen1,Kloet Frans van der1,Hamoen Leendert W.1

Affiliation:

1. University of Amsterdam

Abstract

Abstract Background The bacterium Bacillus subtilis is extensively used for the commercial production of enzymes due to its efficient protein secretion capacity. However, the efficiency of secretion varies greatly between enzymes, and despite many years of research, optimization of enzyme production is still largely a matter of trial-and-error. Genome-wide transcriptome analysis seems a useful tool to identify relevant secretion bottlenecks, yet to this day, only a limited number of transcriptome studies have been published that focus on enzyme secretion in B. subtilis. Here, we examined the effect of high-level expression of the commercially important enzyme endo-1,4-β-xylanase XynA on the B. subtilis transcriptome using RNA-seq.Results Using the novel gene-set analysis tool GINtool, we found a reduced activity of the CtsR regulon when XynA was overproduced. This regulon comprises several protein chaperone genes, including clpC, clpE and clpX, and is controlled by transcriptional repression. CtsR levels are directly controlled by regulated proteolysis, involving ClpC and its cognate protease ClpP. When we abolished this negative feedback, by inactivating the repressor CtsR, the XynA production increased by 25%.Conclusions Overproduction of enzymes can reduce the pool of Clp protein chaperones in B. subtilis, presumably due to negative feedback regulation. Breaking this feedback can improve enzyme production yields. Considering the conserved nature of Clp chaperones and their regulation, this method might benefit high-yield enzyme production in other organisms.

Publisher

Research Square Platform LLC

Reference66 articles.

1. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism;Westers L;Biochim Biophys Acta BBA - Mol Cell Res,2004

2. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes;Zweers JC;Microb Cell Factories,2008

3. An overview of Bacillus proteases: from production to application;Contesini FJ;Crit Rev Biotechnol,2018

4. Schumann W. Production of Recombinant Proteins in Bacillus subtilis.Adv. Appl. Microbiol. 2007. p.137–89.

5. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy;Feng Y;Appl Microbiol Biotechnol,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3