Affiliation:
1. First Affiliated Hospital of Anhui Medical University
2. University of Science and Technology of China
Abstract
Abstract
Background
A high mortality rate has always been observed in patients with severe community-acquired pneumonia (SCAP) admitted to the intensive care unit (ICU); however, there are few reported predictive models regarding the prognosis of this group of patients. This study aimed to screen for risk factors and assign a useful nomogram to predict mortality in these patients.
Methods
As a developmental cohort, we used 455 patients with SCAP admitted to ICU. Logistic regression analyses were used to identify independent risk factors for death. A mortality prediction model was built based on statistically significant risk factors. Furthermore, the model was visualized using a nomogram. As a validation cohort, we used 88 patients with SCAP admitted to ICU of another hospital. The performance of the nomogram was evaluated by analysis of the area under the receiver operating characteristic (ROC) curve (AUC), calibration curve analysis, and decision curve analysis (DCA).
Results
Lymphocytes, PaO2/FiO2, shock, and APACHE II score were independent risk factors for in-hospital mortality in the development cohort. External validation results showed a C-index of 0.903 (95% CI 0.838–0.968). The AUC for the development cohort was 0.850 and that for the validation cohort was 0.893. Calibration curves for both cohorts showed agreement between predicted and actual probabilities. The DCA curve results for both cohorts suggested a high clinical application value for the model.
Conclusions
We developed a predictive model based on lymphocytes, PaO2/FiO2, shock, and APACHE II scores to predict in-hospital mortality in patients with SCAP admitted to the ICU. The model has the potential to help physicians assess the prognosis of this group of patients.
Publisher
Research Square Platform LLC