Characterization of bioplastics developed from Kappaphycus alvarezii crosslinked with commercial sodium alginate

Author:

Hanry Eunice Lua1,Surugau Noumie1

Affiliation:

1. Universiti Malaysia Sabah

Abstract

Abstract Plastic pollution has become one of the most concerning problems globally due to excessive use of one-time use plastics. However, bioplastics could be the answer to help combat this problem as they are readily biodegradable. Development of bioplastics was done by mixing seaweed biomass into distilled water at specific ratio, using glycerol as plasticizer. Bioplastics were developed at the ratio of 100:0, 75:25, 50:50, 25:75, and 0:100 K. alvarezii to commercial sodium alginate ratio. Characterization was done based on their appearance, mechanical, thermal and permeability properties, and biodegradability. Resulted data for their appearance showed that when more K. alvarezii was in the mixture there were more colour differences in comparison to white background and the same trend for the opacity due to the natural colour of whole K. alvarezii. As for their mechanical properties, tensile strength of the bioplastics decreased from 100:0 ratio to 0:100 ratio at 7.91 ± 0.45 MPa (100:0), 6.78 ± 0.31 MPa (75:25), 5.20 ± 0.37 MPa (50:50), 4.13 ± 0.17 MPa (25:75) and 3.76 ± 0.14 MPa (0:100), respectively. Same goes for their elastic modulus at 20.93 ± 0.61 MPa (100:0), 16.47 ± 0.99 MPa (75:25), 11.42 ± 0.53 MPa (50:50), 8.78 ± 0.45 MPa (25:75) and 6.65 ± 0.32 MPa (0:100), respectively. This shows that the addition of alginate enhances the elasticity but decreases tensile strength. As a conclusion, developed seaweed-based bioplastics resulted different properties at different mixture ratio show potential to be incorporated into the market as they are a greener option to fight single-use plastic wrappings such as saran wrap, beverages and food additive packets.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3