A RsrC-RsrA-RsrB transcriptional circuit positively regulates polysaccharide-degrading enzyme biosynthesis and development in Penicillium oxalicum

Author:

Zhao Shuai1ORCID,Ning Yuan-Ni1,Liang Xue1,Shen Xin1,Tian Di1,Li Wen-Tong1,Luo Xue-Mei1,Feng Jia-Xun1ORCID

Affiliation:

1. Guangxi University

Abstract

Abstract

Filamentous fungi produce polysaccharide-degrading enzymes governing tolerance to changing environments, and this is controlled by a poorly understood transcriptional circuit. Here, genome-wide screening and genetic analyses reveal a novel regulatory circuit comprising RsrC-RsrA-RsrB that positively regulates the production of raw starch-degrading enzymes (RSDEs) in Penicillium oxalicum. Transcription factor (TF) RsrA is essential for biosynthesis of RSDEs. Two novel TFs, RsrB and RsrC, containing Zn2Cys6 and C2H2 zinc finger domains, respectively, act downstream and upstream of RsrA. RsrA activates transcription of rsrB, and three nucleotides (G-286, G-287 and G-292) are required for RsrA binding to rsrB. Polypeptide RsrB165-271 binds the conserved DNA sequence 5’-KBKWYSNRKNDVVBS-3’ in the promoters of genes encoding major amylases. RsrC specifically binds rsrA promoter via bases -850 to -825, but not the promoters of amylase genes. This regulatory circuit influences mycelial growth and conidia production. The findings expand the complex regulatory network of fungal RSDE biosynthesis and development.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3