Efficient Identification of Multi-Link Inverted Pendulums via Global Optimization

Author:

Ozana Stepan1,Slanina Zdenek1,Deb Dipankar2,Dalwadi Nihal2,Martinek Radek1

Affiliation:

1. Technical University of Ostrava

2. Institute of Infrastructure, Technology, Research and Management

Abstract

Abstract

Multi-link inverted pendulum systems pose intricate challenges in control theory and robotics, requiring precise dynamic parameter identification to achieve stability and robustness in control strategy design. We present a novel and efficient experimental identification procedure formulated as an optimization problem based on simple short-term datasets and metaheuristic global optimizers. We use a training dataset for identification and validation dataset to evaluate and analyze the obtained results. The study incorporates three distinct global optimization techniques, namely Stochastic Fractal Search (SFS), Growth Optimizer, and Differential Evolution (DEoptim), selected as candidates to handle the identification of multi-link pendulums and similar extremely demanding optimization jobs to be used when controlling modern mechatronic systems. We illustrate that DEoptim dominates over other global optimizers in several aspects. The proposed identification procedure is innovative, adaptable, and simple, relying solely on selected measurable signals sans further signal processing. Its versatility makes it a valuable tool for parameter identification in diverse domains. The results are supported by experiments with the laboratory triple pendulum setup and simulation experiments on a virtual quadruple inverted pendulum.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3