Improving Detection Capabilities of YOLOv8-n for Small Objects in Remote Sensing Imagery: Towards Better Precision with Simplified Model Complexity

Author:

Bai Ruihan1,Shen Feng2,Wang Mingkang3,Lu Jiahui3,Zhang Zhiping3

Affiliation:

1. Hohai University

2. Suzhou University of Science and Technology

3. Tongji University

Abstract

Abstract This study presents a comprehensive analysis and improvement of the YOLOv8-n algorithm for object detection, focusing on the integration of Wasserstein Distance Loss, FasterNext, and Context Aggravation strategies. Through a detailed ablation study, each strategy was systematically evaluated individually and collectively to assess its contribution to the model's performance. The results indicate that each strategy uniquely enhances the model's performance, significantly increasing mAP and reducing model complexity when all three are integrated. Visualizations through Grad-CAM further substantiate the improved model's capacity to extract and focus on key object features. Comparisons with existing models, such as YOLOv5-n, YOLOv5-s, YOLOX-n, YOLOX-s, and YOLOv7-tiny, the improved YOLOv8-n model achieves an optimal balance between accuracy and model complexity, outperforming other models in terms of model accuracy, model complexity, and model inference speed. Further image inference tests validate the model's performance, showcasing its superior detection capabilities.

Publisher

Research Square Platform LLC

Reference22 articles.

1. A Survey of the Four Pillars for Small Object Detection: Multi-scale Representation, Contextual Information, Super-Resolution, and Region Proposal;Chen G;IEEE T. Syst Man Cy-S.,2022

2. Lin, T-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyramid Networks for Object Detection. arXiv preprint arXiv:1612.03144 (2017)

3. Hierarchical Objectness Network for Region Proposal Generation and Object Detection;Wang J;Pattern Recogn.,2018

4. ReDet: A Rotation-Equivariant Detector for Aerial Object Detection;Han J,2021

5. Oriented Bounding Boxes for Small and Freely Rotated Objects;Zand M;IEEE T. Geosci Remote,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3