Determination of tomato leafminer: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) damage on tomato using deep learning instance segmentation method

Author:

Uygun TahsinORCID,Ozguven Mehmet MetinORCID

Abstract

AbstractPests significantly negatively affect product yield and quality in agricultural production. Agricultural producers may not accurately identify pests and signs of pest damage. Thus, incorrect or excessive insecticides may be used. Excessive use of insecticides not only causes human health and environmental pollution, but also increases input costs. Therefore, early detection and diagnosis of pests is extremely important. In this study, the effectiveness of the instance segmentation method, a deep learning-based method, was investigated for the early detection of the damage caused by the T. absoluta pest in the leaf part of the tomato plant under greenhouse conditions. An original dataset was created by acquiring 800 healthy and damaged images under greenhouse conditions. The acquired images were labelled as bounding box and automatically converted to a mask label with the Segment Anything Model (SAM) model. The created dataset was trained with YOLOv8(n/s/m/l/x)-Seg models. As a result of the training, the box performance of the proposed YOLOv8l-Seg model was measured as 0.924 in the mAP0.5 metric. The YOLOv8l-Seg model mask values are, respectively: mAP0.5, mAP0.5–0.95, Precision, Recall showed the best performance with values of 0.935, 0.806, 0.956 and 0.859. Then, the YOLOv8l-Seg model, trained with different data input sizes, showed the best performance at 640 × 640 size and the lowest performance with a value of 0.699 in the  mAP0.5 metric in the 80 × 80 size. The same dataset was trained with YOLOv7, YOLOv5l, YOLACT and Mask R-CNN instance segmentation models and performance comparisons were made with the YOLOv8l-Seg model. As a result, it was determined that the model that best detected T. absoluta damage in tomato plants was the YOLOv8l-Seg model. The Mask R-CNN model showed the lowest performance with a metric of 0.806 mAP0.5. The results obtained from this study revealed that the proposed model and method can be used effectively in detecting the damage caused by the T. absoluta pest.

Funder

Tokat Gaziosmanpasa University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3