Some topological and cardinal properties of the space of permutation degree

Author:

Kocinac Ljubisa1ORCID,Mukhamadiev Farkhod2,Sadullaev Anvar3

Affiliation:

1. University of Niš, Faculty of Sciences and Mathematics, Niš, Serbia

2. National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan

3. Yeoju Technical Institute in Tashkent, Tashkent, Uzbekistan

Abstract

In this paper, we prove a few facts and some cardinal properties of the space of permutation degree introduced in [6]. More precisely, we prove that if the productXn is a Lindel?f (resp. locally Lindel?f) space, then the space SPnX is also Lindel?f (resp. locally Lindel?f). We also prove that if the product Xn is a weakly Lindel?f (resp. weakly locally Lindel?f) space, then the space SPnX is also weakly Lindel?f (resp. weakly locally Lindel?f). Moreover, we investigate the preservation of the network weight, ?-character and local density of topological spaces by the functor of G-permutation degree. It is proved that this functor preserves the network weight, ?-character and local density of infinite topological T1-spaces.

Publisher

National Library of Serbia

Subject

General Mathematics

Reference19 articles.

1. A.V. Arhangel’skii, A theorem on cardinality, Russian Math. Surveys 34 (1979) 153-154.

2. A.V. Arhangel’skii, Functional tightness, Q-spaces and τ-embeddings, Comment. Math. Univ. Carolin. 24 (1983) 105-120.

3. R.B. Beshimov, Some properties of the functor Oβ, J. Math. Sci. 133 (2006) 1599-1601.

4. R.B. Beshimov, Nonincrease of density and weak density under weakly normal functors, Math. Notes 84 (2008) 493-497.

5. R.B. Beshimov, F.G. Mukhamadiev, Cardinal properties of Hattori spaces and their hyperspaces, Questions Answers Gen. Topology 33 (2015) 33-38.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3