Decision tree analysis for prostate cancer prediction

Author:

Stojadinovic Miroslav1,Stojadinovic Milorad2,Pantic Damjan1

Affiliation:

1. Kragujevac Clinical Centre, Clinic of Urology and Nephrology, Department of Urology, Kragujevac

2. Faculty of Medical Sciences, Kragujevac

Abstract

Introduction/Objective. The use of serum prostate-specific antigen (PSA) test has dramatically increased the number of men undergoing prostate biopsy. However, the best possible strategies for selecting appropriate patients for prostate biopsy have yet to be defined. The aim of the study was to develop a classification and regression tree (CART) model that could be used to identify patients with significant prostate cancer (PCa) on prostate biopsy in patients referred due to abnormal PSA, digital rectal examination (DRE) findings, or both, regardless of the PSA level. Methods. The data on clinicopathological characteristics regarding prebiopsy assessment collected from patients who had undergone ultrasound-guided prostate biopsies included the following: age, PSA, DRE, volume of the prostate, and PSA density (PSAD). The CART analysis was carried out using all predictors identified by univariate logistic regression analysis. Different aspects of predictive performance and clinical utility risk prediction model were assessed. Results. In this retrospective study, significant PCa was detected in 92 (41.6%) out of 221 patients. The CART model had three splits based on PSAD, as the most decisive variable, prostate volume, DRE, and PSA. Our model resulted in an 83.3% area under the receiver operating characteristic curve. Decision curve analysis showed that the regression tree provided net benefit for relevant threshold probabilities compared with the logistic regression model, PSAD, and the strategy of biopsying all patients. Conclusion. The model helps to reduce unnecessary biopsies without missing significant PCa.

Publisher

National Library of Serbia

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3