The effect of synthesis of the starting powders on the properties of Cu-Ti-TiB2 alloy obtained by laser melting

Author:

Stasic J.1,Bozic D.1

Affiliation:

1. Institute of Nuclear Sciences “Vinča”, University of Belgrade, Belgrade, Serbia

Abstract

A comparison was made between layer-by-layer laser melting (LM) of two types of feedstock powders: (1) elemental powder blend and (2) mechanically alloyed powder. LM was done by Nd:YAG laser at 1064 nm (max. average power 100 W) in argon ambience. Samples synthesized were Cu-Ti-TiB2 rectangular tracks (20?6?1 mm), and input parameters of the process: powder layer thickness 100-250 ?m, hatch spacing 1 mm, pulse length 4 ms, energy 4 J, pulse repetition rate 20 Hz. Part of the samples was heat-treated in argon at 900 ?C, 10 h. Structural characterization of the samples was done using light microscope and scanning electron microscope (SEM). Chemical analysis of the as-obtained laser melted samples was done by inductively coupled plasma-atomic emission spectrometry (ICP-AES). It was established that the microstructure of LM samples was comprised of Cu-Ti and Cu-B solid regions, and in situ formed microparticles of primary TiB2. Only after high-temperature thermal treatment has the secondary TiB2 occurred. Tensile tests showed much higher strengthening in heat-treated samples with mechanically alloyed powder as starting material, where the formation of secondary TiB2 nanoparticles was considerable.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3