A possible connection between phosphate tungsten bronzes properties and Briggs-Rauscher oscillatory reaction response

Author:

Maksimovic Tijana1ORCID,Maksimovic Jelena2,Tancic Pavle3ORCID,Potkonjak Nebojsa4ORCID,Nedic Zoran2,Joksovic Ljubinka1ORCID,Pagnacco Maja5ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia

2. Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia

3. Geological Survey of Serbia, Belgrade, Serbia

4. "Vinča" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia

5. Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

Abstract

The calcium phosphate tungsten bronze (Ca-PWB) has been synthesized and characterized (TGA, DSC, XRPD, FTIR, SEM). The influence of solid insoluble materials Ca- PWB, as well as lithium doped (Li-PWB) and cation free phosphate tungsten (PWB) bronzes on the oscillatory Briggs-Rauscher (BR) reaction dynamics, is compared. The results show that doping with Li and Ca reduces sensitivity of the BR reaction towards bronzes addition. These findings suggest the usage of the BR reaction as an innovative method for testing of different properties of bronze material. The behavior of PWB in the BR reaction is significantly changed with divalent cation (Ca2+) doping. The reasons for the different bronzes behavior were found in their calculated unit cell volumes. Namely, the compressed Ca-PWB unit cell volume indicates the difficult availability of the active site for heterogeneous catalysis. Hence, the linear correlation (slope) of the BR oscillogram?s length (?osc) vs. mass of bronze in BR reaction might be considered as a new parameter for the evaluation of the bronzes catalytic activity.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3