Numerical study of hydrodynamics and thermal characteristics of heat exchangers with delta winglets

Author:

Wang Yu1

Affiliation:

1. Northwest Polytechnical University, School of Aeronautics, Xi’an, Shaanxi, China

Abstract

The comprehensive performance of heat exchangers is represented by the maximum thermal transfer, the minimum pressure loss, and the smallest pumping power. In recent years, the application of longitudinal vortex generators is developed as an effective technique and important research topic, which could increase the heat transfer enhancement of compact heat exchangers. A 3-D CFD numerical simulation is successfully carried out on thermohydraulic characteristics of the fin-and-tube compact heat exchanger with new types of vortex generators. The effects of six different arrangement of delta winglets are studied, which are front-up-rear-down, front-down-rear-up, common-flow-up, and common-flow-down. In addition, there are also different direction of hole position in the same delta winglets arrangement. The investigation of thermal-hydraulic performance is conducted for Reynolds number in the range of 204-2034. The overall and local performance comparisons among the fin with delta winglets and the wavy fin are performed. Then, the comprehensive performance evaluation diagram was adopted to analyze the combined index point of thermal and flow. This study shows that the flow distinction between different fins has a profound influence on the thermal-hydrodynamic performance. The results reveal that the fin with delta winglets can considerably strengthen the thermal efficiency with a moderate pressure loss penalty. The computational results indicate that the average j-factor for the fin with delta wing-lets can be increased up to 41.9% over the baseline case and the corresponding f-factor decreased up to 19.5%. The combination property of front-up-rear-down are better the others at lower Reynolds number, and that of front-down-rear-up are better at higher Reynolds number. Compare with the traditional arrangement (common-flow-up and common-flow-down), The newly designed fin has great effectiveness and uniform performance in the local region.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3