Heat transfer augmentation characteristics of a fin punched with curve trapezoidal vortex generators at the rear of tubes

Author:

Lin Zhimin1,Wang Zhaocheng1,Li Sha1,Wang Liangbi1,Zhang Yongheng1,Wang Weiwei1,He Jing1

Affiliation:

1. School of Mechanical Engineering, Key Laboratory of Railway Vehicle Thermal Engineering of MOE, Lanzhou Jiaotong University, Lanzhou, Gansu, China

Abstract

The thermal-hydraulic characteristics of a novel fin punched with curve trapezoidal vortex generators (CTVGs) are investigated numerically. The effects of multi-parameters including the geometry of CTVG, the location of CTVGs, and working condition on thermal performance are considered. On one hand, CTVGs can availably lessen the size of tube wake zone, decrease the mechanical energy consumption and heighten the fin heat transfer ability in this area. On the other hand, the secondary flow strength is strengthened because the longitudinal vortices generated by CTVGs, which efficiently enhances the heat transfer on the fin downstream CTVGs. Close relationship exists between the volume-averaged secondary flow strength and the mean Nusselt number. For studied cases, the optimal circumferential location angle of ? = 90? is found, while the optimal radial location Dg is about 1.8 times the tube outside diameter. The smaller is the height or base length of CTVGs, the better the thermal performance of the enhanced fin punched with CTVGs. Better thermal performance is achieved as the fin spacing is about 0.24 times the tube outside diameter.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3