Microchannel topology optimization based on enhanced heat transfer mechanism

Author:

Liu Wenzhu1,Yun Heming1,Wang Baoxue1,Hu Mingzhe1,Zhong Chonglong1

Affiliation:

1. School of Thermal Engineering, Shandong Jianzhu University, Jinan, China

Abstract

Topology optimization modifies the material distribution in the design domain to produce microchannel structure with improved thermal performance. In this work, five heat dissipation microchannel structures with various design domain aspect ratios are optimally designed based on the bi-objective topology optimization method. The optimal design variable fields, temperature fields, and pressure fields are subsequently obtained for each operating condition, and the flow heat transfer effect and the enhanced heat transfer mechanism are investigated under various working conditions. On this basis, the flow heat transfer impact of microchannels under various operating situations is optimized and studied by combining the field synergy concept and entransy dissipation theory. The findings show that when the Reynolds number rises in the laminar flow region, the complexity of the topological flow channels also rises. The average temperature Tave decreases, Nu rises, the inlet and outlet pressure drop ?P gradually increases, the integrated enhanced heat transfer factor PEC gradually decreases, the field synergy number Fcincreases, the pressure drop synergy angle ? gradually increases, the entransy dissipation Evhincreases, and the flow heat transfer performance of each heat dissipation channel is also enhanced due to the complex channels and high Reynolds number in the domain. The investigation of microchannels with various topologies revealed that the microchannels with the same boundary conditions and a design domain aspect ratio of 25/64 had the best synergy effects of velocity-pressure gradient and velocity-temperature gradient, the best heat transfer effect, and the best flow characteristics.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3