Design of amino-functionalized chelated macroporous copolymer [poly(GMA-EDGMA)] for the sorption of Cu (II) ions

Author:

Surucic Ljiljana1,Nastasovic Aleksandra2ORCID,Onjia Antonije3ORCID,Janjic Goran2,Rakic Aleksandra4

Affiliation:

1. University of Banja Luka, Faculty of Medicine, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

2. University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia

3. University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

4. University of Belgrade, Faculty of Physical Chemistry, Belgrade, Serbia

Abstract

Polymer-based, highly porous nanocomposites with functionalized ligands attached to the core structure are extremely efficient in the detection, removal and recovery of metals through the process of sorption. Quantumchemical models could be helpful for sorption process analyses. The sorption of Cu(II) ions by amino-functionalized chelating macroporous copolymers poly(GMA-co-EGDMA)-amine and sorption selectivity of the subject copolymers, ethylenediamine (en), diethylenetriamine (dien) and triethylenetetramine (trien), were successfully modelled by quantum chemical calculations. Considering the crystal structures from CSD and experimental conditions during the formation of metal complexes, the most frequent mononuclear complexes are those with the tetradentate teta ligand, while binuclear complexes are formed when the metal ion is in large excess. Although the en-copolymer was the most effective functionalized one, higher maximum sorption capacities (Qmax) were observed for the dien- and trien-copolymers, due to their abilities to form binuclear complexes. The enthalpy term has the greatest contribution to the total Gibbs energy change of reaction for the formation of mononuclear Cu(II) complexes (?Gaq), while the solvation energy of the reaction has the greatest contribution in the formation of binuclear complexes. The results of the study indicate that small amines with the ability to form binuclear complex are the best choice for functionalization of the considered copolymer.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3