Fast Gold Recovery from Aqueous Solutions and Assessment of Antimicrobial Activities of Novel Gold Composite

Author:

Tadić Tamara1ORCID,Marković Bojana1,Vuković Zorica1,Stefanov Plamen2ORCID,Maksin Danijela3,Nastasović Aleksandra1ORCID,Onjia Antonije4ORCID

Affiliation:

1. Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia

2. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bld. 11, 1113 Sofia, Bulgaria

3. Vinča Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia

4. Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

Abstract

A novel porous gold polymer composite was prepared by the functionalization of a glycidyl methacrylate-based copolymer (pGME) with ethylene diamine (pGME-en), and activation by gold (pGME-en/Au), in a simple batch adsorption procedure in an acid solution, at room temperature. Detailed characterization of the pGME-en before and after activation was performed. The main focuses of this research were the design of a method that can enable the recovery of gold and the reuse of this multipurpose sorbent as an antimicrobial agent. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis pointed out amine groups as the primary binding sites for Au activation, while hydroxyl groups also contributed to the chelation reaction. pGME-en exhibited fast gold adsorption with an adsorption half-time of 5 min and an equilibrium time of 30 min. The maximal adsorption capacity was about 187 mg/g. The analysis of sorption experimental data with a non-linear surface reaction and diffusion-based kinetic models revealed the pseudo-second-order and Avrami model as the best fit, with unambiguous control by liquid film and intra-particle diffusion. The biological activity studies against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Candida albicans revealed moderate activity of pGME-en/Au against different bacterial and fungal species. pGME-en/Au was stable in a saline solution, with a release of approximately 2.3 mg/g after 24 h.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

European Regional Development Fund—Operational Programme Science and Education for Smart Growth

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3