Experimental analysis of the fixed flat-plate solar collector with Sn-Al2O3 selective absorber and gravity water flow

Author:

Nesovic Aleksandar1,Lukic Nebojsa1ORCID,Jurisevic Nebojsa1ORCID,Cvetkovic Dragan2,Dzunic Dragan1ORCID,Josijevic Mladen1ORCID,Nedic Bogdan1ORCID

Affiliation:

1. Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia

2. Institute of Information Technologies, University of Kragujevac, Kragujevac, Serbia

Abstract

To improve solar collector efficiency, a variety of designs and materials have been introduced into production practice. Studies describing solar collector specifics, therefore, are particularly valuable to the scientific community as they contribute to the overall body of knowledge and constant improvement the in the scientific field. In that regard, the study presented in this paper analyses the thermal performance of the fixed flat-plate collector with an Sn-Al2O3 selective absorber. The fixed flat-plate collector design utilizes gravity water flow in an open loop system. A two-month study was conducted to perform the analysis. The experiment was based on measurements of water flow in the fixed flat-plate col-lector, the water temperature at the fixed flat-plate collector inlet and outlet, and solar radiation intensity on a horizontal surface. Results for three randomly selected measurement days have shown that fixed flat-plate collector can achieve relatively satisfactory values for average daily specific heat power, thermal efficiency, and inlet-outlet water temperature gradient, respectively: June 29 (381.78 W/m2, 60.67%, and 9.06?C), June 30 (364.33 W/m2, 59.43%, and 7.46?C), and July 15 (373.06 W/m2, 59.85%, and 8.69?C). Apart from the relatively good measurement results, this type of solar collector does not require circulating pumps for operation, which brings a double advantage: energy saving and energy production.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3