Theoretical and numerical analysis of the fixed flat-plate solar collector with Sn-Al2O3 selective absorber and gravity water flow

Author:

Nesovic Aleksandar1ORCID,Lukic Nebojsa1ORCID,Cvetkovic Dragan2ORCID,Marasevic Miljan3ORCID,Topalovic Marko2ORCID

Affiliation:

1. Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia

2. Institute of Information Technologies, University of Kragujevac, Kragujevac, Serbia

3. Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, Kragujevac, Serbia

Abstract

This paper presents two methods (theoretical and numerical) for the thermal analysis of the previously experimentally installed solar collector construction at the Faculty of Engineering in Kragujevac ? a fixed flat-plate solar collector with Sn-Al2O3 selective absorber and gravity water flow. The theoretical research was based on the application of a specific calculation algorithm with a triple iterative procedure, i.e. with a three-stage check of all important performance indicators of the fixed flat-plate solar collector. In the numerical phase of the research, simple linear regression was applied to experimentally measured values of solar radiation intensity and experimentally determine values of heat power to form simple equations that could be used to predict the thermal performance of similar solar structures in the future. The results of theoretical and numerical studies showed agreement with experimental studies, because in the first case, the absolute measurement error was less than 10%, while in the second case, the determination coefficient was greater than 90%, so the authors hope that this work will be useful to the wider scientific community.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3