Recent trends in bioethanol production

Author:

Semencenko Valentina,Mojovic Ljiljana,Petrovic Slobodan,Ocic Ozren

Abstract

The rapid depletion of the world petroleum supply and the increasing problem of greenhouse gas effects have strenghtened the worldwide interest in alternative, nonpetroleum sources of energy. Bioethanol accounts for the majority of biofuel use worldwide, either as a fuel or a gasoline enhancer. Utilization of bioethanol can significantly reduce petroleum use and exhaust greenhouse gas emission. The production of this fuel is increasing over the years, and has reached the level of 73.9 billion liters during the year 2009. Even though ethanol production for decades mainly depended on energy crops containing starch and sugar (corn, sugar cane etc.), new technologies for converting lignocellulosic biomass into ethanol are under development today. The use of lignocellulosic biomass, such as agricultural residues, forest and municipial waste, for the production of biofuels will be unavoidable if liquid fossil fuels are to be replaced by renewable and sustainable alternatives. For biological conversion of lignocellulosic biomass, pretreatment plays a central role affecting all unit operations in the process and is also an important cost deterrent to the comercial viability of the process. The key obstacles are: pretreatment selection and optimization; decreasing the cost of the enzymatic hydrolysis; maximizing the conversion of sugars (including pentoses) to ethanol; process scale-up and integration to minimize energy and water demand; characterization and evaluation of the lignin co-product; and lastly, the use of the representative and reliable data for cost estimation, and the determination of environmental and socio-economic impacts. Currently, not all pretreatments are capable of producing biomass that can be converted to sugars in high enough yield and concentration, while being economically viable. For the three main types of feedstocks, the developement of effective continuous fermentation technologies with near to 100% yields and elevated volumetric productivities is one of the main research subjects in the ethanol industry. The application of new, engineered enzyme systems for cellulose hydrolysis, the construction of inhibitor tolerant pentose fermenting strains, combined with optimized process integration promise significant improvements.

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3