Thermal drift in an inclined viscous fluid flow

Author:

Jovanovic Milos1ORCID,Milanovic Sasa1ORCID,Boricic Aleksandar1ORCID,Spasic Zivan1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Niš, Niš, Serbia

Abstract

This paper considers viscous fluid flow in a slot between two parallel plates which start inclining with respect to the horizontal line. The lower plate was heated and had non-homogeneous temperature distribution while the upper plate was cooled and with homogeneous temperature distribution. The spatially periodic temperature distribution was gradually applied at the lower plate, after which the plates were slowly inclined in the positive-counterclockwise direction, and the fields of vorticity, stream function, and temperature are presented for different values of the angle of inclination. We used the vorticity-stream function formulation of Navier-Stokes equations, Fourier-Galerkin, and Chebyshev collocation method for numerical simulation of 2-D viscous fluid flow. We carried out numerical simulation using our in-house MATLAB code for subcritical uniform Rayleigh number, Rauni, and periodic Rayleigh number, Rap, on the lower plate. An accurate numerical scheme was developed to capture the full time-dependent behavior here. The interest lied in how the intensities of the vortexes and convection rolls changed as the inclination angle was increased with respect to time. Convection rolls rotating in the clockwise direction expanded and the rolls rotating in the counterclockwise direction shrank and their centers moved closer to the lower wall. Thermal drift appeared between them when the inclination angle started increasing.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3