Wall to wall optimal transport

Author:

Hassanzadeh Pedram,Chini Gregory P.,Doering Charles R.

Abstract

AbstractThe calculus of variations is employed to find steady divergence-free velocity fields that maximize transport of a tracer between two parallel walls held at fixed concentration for one of two constraints on flow strength: a fixed value of the kinetic energy (mean square velocity) or a fixed value of the enstrophy (mean square vorticity). The optimizing flows consist of an array of (convection) cells of a particular aspect ratio $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\varGamma $. We solve the nonlinear Euler–Lagrange equations analytically for weak flows and numerically – as well as via matched asymptotic analysis in the fixed energy case – for strong flows. We report the results in terms of the Nusselt number ${\mathit{Nu}}$, a dimensionless measure of the tracer transport, as a function of the Péclet number ${\mathit{Pe}}$, a dimensionless measure of the strength of the flow. For both constraints, the maximum transport ${\mathit{Nu}}_{\mathit{MAX}}({\mathit{Pe}})$ is realized in cells of decreasing aspect ratio $\varGamma _{\mathit{opt}}({\mathit{Pe}})$ as ${\mathit{Pe}}$ increases. For the fixed energy problem, ${\mathit{Nu}}_{\mathit{MAX}} \sim {\mathit{Pe}}$ and $\varGamma _{\mathit{opt}} \sim {\mathit{Pe}}^{-1/2}$, while for the fixed enstrophy scenario, ${\mathit{Nu}}_{\mathit{MAX}} \sim {\mathit{Pe}}^{10/17}$ and $\varGamma _{\mathit{opt}} \sim {\mathit{Pe}}^{-0.36}$. We interpret our results in the context of buoyancy-driven Rayleigh–Bénard convection problems that satisfy the flow intensity constraints, enabling us to investigate how the transport scalings compare with upper bounds on ${\mathit{Nu}}$ expressed as a function of the Rayleigh number ${\mathit{Ra}}$. For steady convection in porous media, corresponding to the fixed energy problem, we find ${\mathit{Nu}}_{\mathit{MAX}} \sim {\mathit{Ra}}$ and $\varGamma _{\mathit{opt}} \sim {\mathit{Ra}}^{-1/2}$, while for steady convection in a pure fluid layer between stress-free isothermal walls, corresponding to fixed enstrophy transport, ${\mathit{Nu}}_{\mathit{MAX}} \sim {\mathit{Ra}}^{5/12}$ and $\varGamma _{\mathit{opt}} \sim {\mathit{Ra}}^{-1/4}$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3