Carbon dioxide captured by multi-walled carbon nanotube and activated charcoal: A comparative study

Author:

Khalili Soodabeh1,Ghoreyshi Asghar1,Jahanshahi Mohsen1

Affiliation:

1. Chemical Engineering Department, Babol University of Technology, Babol, Iran

Abstract

this study, the equilibrium adsorption of CO2 on activated charcoal (AC) and multi-walled carbon nanotube (MWCNT) were investigated. Experiments were performed at temperature range of 298-318 K and pressures up to 40 bars. The obtained results indicated that the equilibrium uptakes of CO2 by both adsorbents increased with increasing pressure and decreasing temperature. In spite of lower specific surface area, the maximum amount of CO2 uptake achieved by MWCNT at 298K and 40 bars were twice of CO2 capture by AC (15 mmol.g-1 compared to 7.93 mmol.g-1). The higher CO2 captured by MWCNT can be attributed to its higher pore volume and specific structure of MWCN T such as hollowness and light mass which had greater influence than specific surface area. The experimental data were analyzed by means of Freundlich and Langmuir adsorption isotherm models. Following a simple acidic treatment procedure increased marginally CO2 capture by MWCNT over entire range of pressure, while for AC this effect appeared at higher pressures. Small values of isosteric heat of adsorption were evaluated based on Clausius-Clapeyron equation showed the physical nature of adsorption mechanism. The high amount of CO2 capture by MWCNT renders it as a promising carrier for practical applications such as gas separation.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3