Carbon Dioxide Capture by Adsorption in a Model Hydroxy-Modified Graphene Pore

Author:

Freyre Paige1,St. Pierre Emalee1,Rybolt Thomas1

Affiliation:

1. Department of Chemistry and Physics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

Abstract

Concerns regarding the environmental impact of increasing levels of anthropogenic carbon dioxide have led to a variety of studies examining solid surfaces for their ability to trap this greenhouse gas (GHG). Atmospheric or post-combustion carbon capture requires an efficient separation of carbon dioxide and nitrogen gas. We used the molecular mechanics MM3 parameter set (previously shown to provide good estimates of molecule–surface binding energies) to calculate theoretical surface binding energies for carbon dioxide ∆E(CO2) and nitrogen ∆E(N2). For efficient separation, differentiation of these two gas-surface adsorption energies is required. Examined structures based on graphene, carbon slit width pore, and carbon nanotube gave ∆E(CO2) to ∆E(N2) ratios of 1.7, 1.8, and 1.9, respectively. To enhance the CO2 adsorption, we developed a model graphene surface pore lined with four hydroxy groups whose orientation allowed them to form hydrogen bonds with the oxygens in CO2. Both the single-layer and double-layer versions of this pore gave significant enhancement in the ability to trap CO2 preferentially to N2. The two-layer version of this pore gave ∆E(CO2) = 73 and ∆E(N2) = 6.8 kJ/mol. The one- and two-layer versions of this novel pore averaged a ∆E(CO2) to ∆E(N2) ratio of 12.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3