Geographic and technical floating photovoltaic potential

Author:

Tina Giuseppe1,Cazzaniga Raniero2,Rosa-Clot Marco2,Rosa-Clot Paolo2

Affiliation:

1. DIEEI, University of Catania, Catania, Italy

2. Koinè, Pisa, Italy

Abstract

The photovoltaic geographic potential (PVGP) is defined as the fraction of the solar irradiation received on the land available for a photovoltaic facility. The area of this usable land is calculated by a suitability factor which is determined by a variety of different geographical constraints. We extend this kind of analysis to floating photovoltaic (FPV) structures and consider the use of water surfaces with the same definitions and notations used to define the PVGP for systems installed on the ground. Results are very promising because of the large water surfaces available and because of the possibility to build floating structures which are more compact than land based photovoltaic plants. In fact, using just 1% of natural basins areas to install FPV plants, about 25% of the world electrical energy demand (in 2014) can be supplied. The PVGP is evaluated for two PVF raft geometries: one is a typical shed structure, the other is an innovative solution named gable.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3