Computational fluid simulation of non-Newtonian two-phase fluid flow through a channel with a cavity

Author:

Ahmadi Mehdi1,Khosravi Farsani1

Affiliation:

1. Islamic Azad University, Department of Mechanical Engineering, Shahrekord Branch, Shahrekord, Iran

Abstract

In this paper, the numerical solution of non-Newtonian two-phase fluid-flow through a channel with a cavity was studied. Carreau-Yasuda non-Newtonian model which represents well the dependence of stress on shear rate was used and the effect of n index of the model and the effect of input Reynolds on the attribution of flow were considered. Governing equations were discretized using the finite volume method on staggered grid and the form of allocating flow parameters on staggered grid is based on marker and cell method. The QUICK scheme is employed for the convection terms in the momentum equations, also the convection term is discretized by using the hybrid upwind-central scheme. In order to increase the accuracy of making discrete, second order Van Leer accuracy method was used. For mixed solution of velocity-pressure field SIMPLEC algorithm was used and for pressure correction equation iteratively line-by-line TDMA solution procedure and the strongly implicit procedure was used. As the results show, by increasing Reynolds number, the time of sweeping the non-Newtonian fluid inside the cavity decreases, the velocity of Newtonian fluid increases and the pressure decreases. In the second section, by increasing n index, the velocity increases and the volume fraction of non-Newtonian fluid after cavity increases and by increasing velocity, the pressure decreases. Also changes in the velocity, pressure and volume fraction of fluids inside the channel and cavity are more sensible to changing the Reynolds number instead of changing n index.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3