Mathematical Tools for Simulation of 3D Bioprinting Processes on High-Performance Computing Resources: The State of the Art

Author:

Carracciuolo Luisa1ORCID,D’Amora Ugo2ORCID

Affiliation:

1. Institute of Polymers, Composites and Biomaterials (IPCB)—National Research Council (CNR), 80078 Pozzuoli, Naples, Italy

2. Institute of Polymers, Composites and Biomaterials (IPCB)—National Research Council (CNR), 80125 Naples, Italy

Abstract

Three-dimensional (3D) bioprinting belongs to the wide family of additive manufacturing techniques and employs cell-laden biomaterials. In particular, these materials, named “bioink”, are based on cytocompatible hydrogel compositions. To be printable, a bioink must have certain characteristics before, during, and after the printing process. These characteristics include achievable structural resolution, shape fidelity, and cell survival. In previous centuries, scientists have created mathematical models to understand how physical systems function. Only recently, with the quick progress of computational capabilities, high-fidelity and high-efficiency “computational simulation” tools have been developed based on such models and used as a proxy for real-world learning. Computational science, or “in silico” experimentation, is the term for this novel strategy that supplements pure theory and experiment. Moreover, a certain level of complexity characterizes the architecture of contemporary powerful computational resources, known as high-performance computing (HPC) resources, also due to the great heterogeneity of its structure. Lately, scientists and engineers have begun to develop and use computational models more extensively to also better understand the bioprinting process, rather than solely relying on experimental research, due to the large number of possible combinations of geometrical parameters and material properties, as well as the abundance of available bioprinting methods. This requires a new effort in designing and implementing computational tools capable of efficiently and effectively exploiting the potential of new HPC computing systems available in the Exascale Era. The final goal of this work is to offer an overview of the models, methods, and techniques that can be used for “in silico” experimentation of the physicochemical processes underlying the process of 3D bioprinting of cell-laden materials thanks to the use of up-to-date HPC resources.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3