Biologically inspired transport of solid spherical nanoparticles in an electrically-conducting viscoelastic fluid with heat transfer

Author:

Zeeshan Ahmed1,Bhatti Mubashir2,Ijaz Nouman1,Bég Osman3,Kadir Ali4

Affiliation:

1. International Islamic University, Department of Mathematics and statistics, Islamabad, Pakistan

2. Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, China

3. University of Salford, School of Computing, Science and Engineering, Newton Building, Fluid Mechanics and Propulsion, Aeronautical/Mechanical Engineering Department, Manchester, UK

4. University of Salford, School of Computing, Science and Engineering, Newton Building, Materials and Corrosion, Aeronautical/Mechanical Engineering Department, Manchester, UK

Abstract

Bio-inspired pumping systems exploit a variety of mechanisms including peristalsis to achieve more efficient propulsion. Non-conducting, uniformly dispersed, spherical nanosized solid particles suspended in viscoelastic medium forms a complex working matrix. Electromagnetic pumping systems often employ complex working fluids. A simulation of combined electromagnetic bio-inspired propulsion is observed in the present article. Currents formation has increasingly more applications in mechanical and medical industry. A mathematical study is conducted for MHD pumping of a bi-phase nanofluid coupled with heat transfer in a planar channel. Two-phase model is employed to separately identity the effects of solid nanoparticles. Base fluid employs Jeffery?s model to address viscoelastic characteristics. The model is simplified using long wavelength and creeping flow approximations. The formulation is taken to wave frame and non-dimensionalise the equations. The resulting boundary value problem is solved analytically, and exact expressions are derived for the fluid velocity, particulate velocity, fluid-particle temperature, fluid and particulate volumetric flow rates, axial pressure gradient and pressure rise. The influence of volume fraction density, Prandtl number, Hartmann number, Eckert number, and relaxation time on flow and thermal characteristics is evaluated in detail. The axial flow is accelerated with increasing relaxation time and greater volume fraction whereas it is decelerated with greater Hartmann number. Both fluid and particulate temperature are increased with increment in Eckert and Prandtl numbers, whereas it is reduced when the volume fraction density increases. With increasing Hartmann number pressure rise is reduced

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3