A comparative study of exact and neural network models for wave‐induced multiphase flow in nonuniform geometries: Application of Levenberg–Marquardt neural networks

Author:

Hussain Syed Modassir1ORCID,Ijaz Nouman2ORCID,Dhahbi Sami3,Saleem Najma4,Zeeshan Ahmad5ORCID

Affiliation:

1. Department of Mathematics Faculty of Science Islamic University of Madinah Madinah Saudi Arabia

2. Department of Mathematics and Statistics Punjab Group of Colleges Jhelum Pakistan

3. Applied College of Mahail Aseer King Khalid University Muhayil Aseer Saudi Arabia

4. Department of Mathematics and Natural Sciences Prince Mohammad Bin Fahd University Khobar Saudi Arabia

5. Department of Mathematics and Statistics FBAS International Islamic University Islamabad Islamabad Pakistan

Abstract

AbstractMultiphase fluids exhibit immiscible, heterogeneous structures like emulsions, foams, and suspensions. Their complex rheology arises from relative phase proportions, interfacial interactions, and component properties. Consequently, they demonstrate nonlinear effects—shear‐thinning, viscoelasticity, and yield stress. Peristalsis generates fluid flow by propagating contraction waves along channel walls. This mechanism can effectively transport multiphase and non‐Newtonian fluids in microsystems. Accurate modeling requires considering evolving phase relations, variable viscosity, slip, and particle migration anomalies, using approaches like homogenization theory or volume‐averaging. Applications include peristaltic pumping of emulsified biopharmaceuticals, microscale mixing/separating of multiphase constituents, and enhancing porous media fluid flow in oil reservoirs. Analytical and computational approaches to modeling multiphase fluid flows in peristaltic conduits provide an enhanced understanding of their complex dynamics, toward innovating engineering systems. An analytical approach is taken to model non‐Newtonian Ree‐Eyring fluid flows in asymmetric, peristaltic systems. Governing differential equations incorporate key parameters and yield closed‐form solutions for velocity, flow rate, and permeability. Suitable assumptions of long wavelength, and low Reynolds number provide accuracy. In parallel, an artificial neural network (ANN) is developed using supervised learning to predict permeability. The inputs consist of channel asymmetry, Reynolds number, amplitude ratio, and other physical factors. Outcomes validate both methodologies—analytical equations derive precise relationships from first principles, while ANNs reliably learn the system patterns from input‐output data. Additionally, ANNs can tackle more complex fluid dynamics problems with speed and adaptability. Their promising role is highlighted in developing new fluid models, improving the efficiency of simulations, and designing control systems. Side‐by‐side analytical and ANN simulation plots will further highlight ANN capabilities in emulating the system characteristics. This paves the path for employing machine learning to investigate multifaceted flows in flexible, peristaltic systems at scale. Performing a graphical examination of the engineering skin friction coefficient across a range of parameters, encompassing volume fraction, first and second order slip, Ree–Eyring fluid attributes, and permeability.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3