Classification and analysis of MOOCs learner’s state: The study of hidden Markov model

Author:

Chen Haijian1,Dai Yonghui2,Gao Heyu3,Han Dongmei3,Li Shan2

Affiliation:

1. Institute of science and technology, Shanghai Open University, Shanghai, China

2. Management School, Shanghai University of International Business and Economics, Shanghai, China

3. School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai, China

Abstract

In MOOCs, learner?s state is a key factor to learning effect. In order to study on learner?s state and its change, the Hidden Markov Model was applied in our study, and some data of learner were analyzed, which includes MOOCs learner?s basic information, learning behavior data, curriculum scores and data of participation in learning activities. The relationship of the learning state, the environment factors and the learner?s individual conditions was found based on the data mining of the above of learning behavior data. Generally, there are three main conclusions in our research. Firstly, learners with different educational background have different learning states when they first learn from MOOCs. Secondly, the environmental factors such as curriculum quality, overall learning status and number of learners will influence the change of learners? learning status. Thirdly, the learner?s behavioral expression is an observational signal of different learning states, which can be used to detect and manage the learner?s learning states in different periods. From the analysis results of Hidden Markov Model, it is found that learners in different learning states can adopt appropriate methods to improve their learning efficiency. If the learner is in a negative state, the learning efficiency can be improved by improving the learning environment. If the learner is in a positive state, the positive learning status of the surrounding learners can help him or her maintain current state. Our research can help the MOOCs institutions improve the curriculum and provide reference for the development of MOOCs teaching.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3