A new anomalous text detection approach using unsupervised methods

Author:

Amouee Elham1,Zanjireh Morteza1,Bahaghighat Mahdi1,Ghorbani Mohsen2

Affiliation:

1. Computer Engineering Department, Imam Khomeini International University, Qazvin, Iran

2. Departmnet of Electrical engineering, raja University, Qazvin, Iran

Abstract

Increasing size of text data in databases requires appropriate classification and analysis in order to acquire knowledge and improve the quality of decision-making in organizations. The process of discovering the hidden patterns in the data set, called data mining, requires access to quality data in order to receive a valid response from the system. Detecting and removing anomalous data is one of the pre-processing steps and cleaning data in this process. Methods for anomalous data detection are generally classified into three groups including supervised, semi-supervised, and unsupervised. This research tried to offer an unsupervised approach for spotting the anomalous data in text collections. In the proposed method, a combination of two approaches (i.e., clustering-based and distance-based) is used for detecting anomaly in the text data. In order to evaluate the efficiency of the proposed approach, this method is applied on four labeled data sets. The accuracy of Na?ve Bayes classification algorithms and decision tree are compared before and after removal of anomalous data with the proposed method and some other methods such as Density-based spatial clustering of applications with noise (DBSCAN). Our proposed method shows that accuracy of more than 92.39% can be achieved. In general, the results revealed that in most cases the proposed method has a good performance.

Publisher

National Library of Serbia

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3