Radiation portal monitors response to gamma radiation and to the detection capability of Orphan radioactive sources: Contribution of the Strass project

Author:

Clouvas Alexandros1,Leontaris Fokion1,Xanthos Stelios2

Affiliation:

1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

2. Department of Industrial Engineering and Management, International Hellenic University, Thessaloniki, Greece

Abstract

Radiation portal monitors are commonly used to detect and intercept unauthorized movement of nuclear and other radioactive materials at country borders. A total of twelve double-pillar portal monitors are present at the Greek-North Macedonian border, each containing two polystyrene scintillating detectors per pillar. Spatial and spectral response testing of the scintillating detectors to gamma radiation was performed by using different radioactive sources and comparing the measurement results with Monte Carlo simulations. A good agreement of the experimentally deduced activities of different point sources, needed for alarm triggering of the radiation portal monitors with Monte Carlo calculated values, was observed. Spectral results show no photopeaks in the spectra due to low resolution of these detectors. The broad peaks observed in the spectra correspond to the Compton edge. Measured spectra with a 137Cs source placed directly on the scintillating detector, at several positions away from the photo multiplier tube, show an energy shift of the Compton edge towards lower energies, as the source is moving away from the photo multiplier tube. The energy shift is due to light transfer mechanisms within the scintillator volume and therefore, it is only observed in optical simulations and not in gamma-ray particle simulations.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3