Tracing trending topics by analyzing the sentiment status of tweets

Author:

Choi Dongjin1,Hwang Myunggwon2,Kim Jeongin1,Ko Byeongkyu1,Kim Pankoo1

Affiliation:

1. Dept. of Computer Engineering, Chosun University, Seoseok-dong, Dong-gu, Gwangju, Republic of Korea

2. Korea Institute of Science and Technology Institute (KISTI), Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea

Abstract

Information spreads much faster through social networking services (SNSs) than through traditional news media because users can upload data anytime, anywhere. SNSs users are likely to express their emotional status to let their friends or other users know how they feel about certain events. This is the main reason why many studies have employed social media data to uncover hidden facts or issues by analyzing social relationships and reciprocated messages between users. The main goal of this study is to discover who is isolated, why, and how the issue of social bullying can be addressed through an in-depth analysis of negative Tweets. For this, our study takes the basic approach by tracking events considered to be exciting by users and then analyzing the sentiment status of their Tweets collected between November and December 2009 by Stanford University. The results suggest that users tend to be happier during evenings than during afternoons. The results also identify the precise date of breaking news.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3