Bioaccumulation of heavy metals in common reed (Phragmites australis) growing spontaneously on highly contaminated mine tailing ponds in Serbia and potential use of this species in phytoremediation

Author:

Prica Milijana1ORCID,Andrejic Gordana2ORCID,Sinzar-Sekulic Jasmina1ORCID,Rakic Tamara1,Dzeletovic Zeljko2

Affiliation:

1. Department of Plant Ecology and Phytogeography, Faculty of Biology, Belgrade

2. Institute for the Application of Nuclear Energy, Zemun

Abstract

Heavy metal contamination of aquatic ecosystems directly threatens the health, production and biodiversity of aquatic and surrounding terrestrial ecosystems, and it represents a serious global problem. Metal extraction during ore processing produces large amounts of wastes that remain in tailings at the mining site. Fine waste particles represent a long-term source of potentially toxic metals that can be released into the ground and surface water as a result of their progressive chemical weathering. Aquatic macrophythes have a major role in absorption and accumulation of heavy metals and thereby in natural water purification. The presence of naturally growing plants on mine tailing ponds indicates their tolerance of heavy metal pollution and suggests a possible role for them in phytoremediation. In the present study, we analysed the concentrations of heavy metals (Fe, Mn, Ni, Zn, Pb, Cd, Co, Cu) in Phragmites australis plants growing spontaneously in shallow water of several mine tailing ponds. The aims of the study were to define chemical properties of the mine spoils, determine the concentrations of heavy metals in different plant organs and assess the phytoremediation potential of common reed. The investigated sediments were notably rich in both total and available forms of Fe, Pb, Zn and Cu, with their upper concentrations close to phytotoxic levels. The greatest amounts of almost all of the investigated metals in plants from all three mine tailing ponds were found in the roots, with their concentrations positively correlated with the amounts of their available forms in the corresponding sediment. The far higher metal concentrations in the roots in comparison with other plant organs clearly indicate that the metals were strongly sequestrated within root cortical tissues and were not transferred across the endodermis. Taken altogether, the presence of the greatest amounts of metals in roots, high bioaccumulation factor and low translocation factor show that P. australis is an excluder plant species with a good phytostabilisation potential. As such, it might be efficiently used in rhizofiltration of wastewaters.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3